A Docker Image for Graph Analytics on Neo4j with Apache Spark GraphX

Thursday, November 27, 2014

I've just released a useful new Docker image for graph analytics on a Neo4j graph database with Apache Spark GraphX. This image deploys a container with Apache Spark and uses GraphX to perform ETL graph analysis on subgraphs exported from Neo4j. This docker image is a great addition to Neo4j if you're looking to do easy PageRank or community detection on your graph data. Additionally, the results of the graph analysis are applied back to Neo4j.

This gives you the ability to optimize your recommendation-based Cypher queries by filtering and sorting on the results of the analysis.

Photo credit AMPLab Berkley

Using Apache Spark and Neo4j for Big Data Graph Analytics

Monday, November 3, 2014

As engineers, when we think about how to solve big data problems, evaluating technologies becomes a choice between scalable and not scalable. Ideally we choose the technologies that can scale to a variety of business problems without hitting a ceiling down the road.

Database technologies have evolved to be able to store big data, but are largely inflexible. The data models require tedious transformations and shuffling around of data. This is a complex process that is compounded in its complexity by combining a variety of inflexible solutions and platforms.

Fast and scalable analysis of big data has become a critical competitive advantage for companies. There are open source tools like Apache Hadoop and Apache Spark that are providing opportunities for companies to solve these big data problems in a scalable way. Platforms like these have become the foundation of the big data analysis movement.

Still, where does all that data come from? Where does it go when the analysis is done?

Deep Learning Sentiment Analysis for Movie Reviews using Neo4j

Monday, September 15, 2014

While the title of this article references Deep Learning, it's important to note that the process described below is more of a deep learning metaphor into a graph-based machine learning algorithm. No neural networks are used.

Sentiment analysis uses natural language processing to extract features of a text that relate to subjective information found in source materials.

Movie Review Sentiment Analysis

A movie review website allows users to submit reviews describing what they either liked or disliked about a particular movie. Being able to mine these reviews and generate valuable meta data that describes its content provides an opportunity to understand the general sentiment around that movie in a democratized way. That’s a pretty cool thing if you think about it. Using machine learning we can democratize subjectivity about anything in the world. We can make an objective analysis of subjective content, giving us the ability to better understand trends around products and services that we can use to make better decisions as consumers.